Activities

Cell and process development

System & prototype manufacture and scale-up

Demonstration and downstream integration

Road map to sustainable business

Project Partners

Contacts

hyperhorizon.eu

info@hyperhorizon.eu

in

HyperHorizon

An electrochemically produced oxidiser for modular, onsite generation of HYdrogen PERoxide (Grant Agreement No. 101091554). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency (HaDEA). Neither the European Union nor the granting authority can be held responsible for them.

An
electrochemically
produced oxidiser
for modular, onsite
generation of
HYdrogen
PERoxide

The Project

HYPER aims to help transform H₂O₂ production from a large-volume, energy intensive chemical process to a smaller-scale, robust, modular, sustainable, electrochemical process, providing significant benefits.

Where H₂O₂ is used

TEXTILE INDUSTRY

PAPER PULP BLEACHING

CHEMICAL SYNTHESIS

ELECTRONIC INDUSTRY

WASTEWATER TREATMENT

MEDICAL INDUSTRY

HYPER Process

TRL6 - demonstration of H₂O₂ on-site, modular, electrochemical production using stable oxidants

Renewable electricity

Storage of electrical energy through production of a stable oxidant (anode): H₂S₂O₈ (persulfate) Co-production of readily

utilised H₂ (cathode)

On-demand and on-site production of H₂O₂ in quantity and concentration needed

H₂O₂

ENVIRONMENTAL INNOVATIONS

- Up to 75% decrease in CO₂ footprint
- Energy consumption reduced by over one third
- Energy storage in the form of stable & strong oxidants
- Recycling of electrolytic components
- Energy efficient, safe & cost effective

Current Process Drawbacks

Dependent on fossil fuel derived H₂

Produced and shipped in large volumes, of which half is water

Energy intensive O₂ separation

On-site handling of unstable oxidant

Benefits of HYPER

Flexible integration of H₂O₂ production in downstream production lines

Versatility to other sectors and products

